10 research outputs found

    Ice stream subglacial access for ice-sheet history and fast ice flow: the BEAMISH Project on Rutford Ice Stream, West Antarctica and initial results on basal conditions

    Get PDF
    Three holes were drilled to the bed of Rutford Ice Stream, through ice up to 2154 m thick, to investigate the basal processes and conditions associated with fast ice flow and the glacial history of the West Antarctic Ice Sheet. A narrative of the drilling, measuring and sampling activities, as well as some preliminary results and initial interpretations of subglacial conditions, is given. These were the deepest subglacial access holes ever drilled using the hot-water drilling method. Samples of bed and englacial sediments were recovered, and a number of instruments were installed in the ice column and the bed. The iceā€“bed interface was found to be unfrozen, with an existing, well-developed subglacial hydrological system at high pressure, within ~1% of the ice overburden. The bed itself comprises soft, water-saturated sediments, consistent with previous geophysical interpretations. Englacial sediment quantity varies significantly between two locations ~2 km apart, and possibly over even shorter (~20 m) distances. Difficulties and unusual observations encountered while connecting to the subglacial hydrological system in one hole possibly resulted from the presence of a large clast embedded in the bottom of the ice

    Highly variable friction and slip observed at Antarctic ice stream bed

    Get PDF
    The slip of glaciers over the underlying bed is the dominant mechanism governing the migration of ice from land into the oceans, with accelerating slip contributing to sea-level rise. Yet glacier slip remains poorly understood, and observational constraints are sparse. Here we use passive seismic observations to measure both frictional shear stress and slip at the bed of the Rutford Ice Stream in Antarctica using 100,000 repetitive stick-slip icequakes. We find that basal shear stresses and slip rates vary from 104 to 107ā€‰Pa and 0.2 to 1.5ā€‰m per day, respectively. Friction and slip vary temporally over the order of hours, and spatially over 10s of metres, due to corresponding variations in effective normal stress and iceā€“bed interface material. Our findings suggest that the bed is substantially more complex than currently assumed in ice stream models and that basal effective normal stresses may be significantly higher than previously thought. Our observations can provide constraints on the basal boundary conditions for ice-dynamics models. This is critical for constraining the primary contribution of ice mass loss in Antarctica and hence for reducing uncertainty in sea-level rise projections

    Subglacial lakes and hydrology across the Ellsworth Subglacial Highlands, West Antarctica

    Get PDF
    Subglacial water plays an important role in ice sheet dynamics and stability. Subglacial lakes are often located at the onset of ice streams and have been hypothesised to enhance ice flow downstream by lubricating the iceā€“ bed interface. The most recent subglacial-lake inventory of Antarctica mapped nearly 400 lakes, of which āˆ¼ 14 % are found in West Antarctica. Despite the potential importance of subglacial water for ice dynamics, there is a lack of detailed subglacial-water characterisation in West Antarctica. Using radio-echo sounding data, we analyse the iceā€“bed interface to detect subglacial lakes. We report 33 previously uncharted subglacial lakes and present a systematic analysis of their physical properties. This represents a āˆ¼ 40 % increase in subglacial lakes in West Antarctica. Additionally, a new digital elevation model of basal topography of the Ellsworth Subglacial Highlands was built and used to create a hydropotential model to simulate the subglacial hydrological network. This allows us to characterise basal hydrology, determine subglacial water catchments and assess their connectivity. We show that the simulated subglacial hydrological catchments of the Rutford Ice Stream, Pine Island Glacier and Thwaites Glacier do not correspond to their ice surface catchments

    Bathymetry and bed conditions of Lago Subglacial CECs, West Antarctica

    Get PDF
    Although over 600 Antarctic subglacial lakes have been identified using radar and satellite observations, the bathymetry and bed properties, which are key to understanding conditions within the lake, have been determined in very few localities. We present measurements of water column thickness and lakebed properties from Lago Subglacial CECs (SLC), located beneath 2653 m of ice at the Rutford-Institute-Minnesota divide in Antarctica. Seismic profiles indicate a maximum water column thickness of 301.3 Ā± 1.5 m, at the widest part of the lake, with an estimated lake volume of 2.5 Ā± 0.3 km3. Seismic imaging and measurements of the reflection strength at the ice base and lakebed indicate >15 m of high-porosity fine-grained sediment in the central section of the lakebed, consistent with a depositional sequence with an age of up to 0.5 Ma. These observations, along with previous radar measurements and modelling, indicate a low-energy sedimentary environment with a long water-residence time. As such, SLC is a suitable target for exploration via direct access to recover sediment records of ice sheet and climate history and investigate microbial life with long periods of isolation

    Distributed Acoustic Sensing (DAS) for natural microseismicity studies: A case study from Antarctica

    Get PDF
    Icequakes, microseismic earthquakes at glaciers, offer insights into the dynamics of ice sheets. For the first time in the Antarctic, we explore the use of fiber optic cables as Distributed Acoustic Sensors (DAS) as a new approach for monitoring basal icequakes. We present the use of DAS for studying icequakes as a case study for the application of DAS to microseismic datasets in other geological settings. Fiber was deployed on the ice surface at Rutford Ice Stream in two different configurations. We compare the performance of DAS with a conventional geophone network for: microseismic detection and location; resolving source and noise spectra; source mechanism inversion; and measuring anisotropic shear-wave splitting parameters. Both DAS array geometries detect fewer events than the geophone array. However, DAS is superior to geophones for recording the microseism signal, suggesting the applicability of DAS for ambient noise interferometry. We also present the first full-waveform source mechanism inversions using DAS anywhere, successfully showing the horizontal stick-slip nature of the icequakes. In addition, we develop an approach to use a 2D DAS array geometry as an effective multi-component sensor capable of accurately characterising shear-wave splitting due to the anisotropic ice fabric. Although our observations originate from a glacial environment, the methodology and implications of this work are relevant for employing DAS in other microseismic environments

    Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise

    Get PDF
    Using 8ā€25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26ā€30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting alongā€strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataksā€Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35ā€40km is modelled beneath the Haag Nunataksā€Ellsworth Mountains, decreasing to ~30ā€32km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the latticeā€preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust

    Radar characterization of ice crystal orientation fabric and anisotropic viscosity within an Antarctic ice stream

    Get PDF
    We use polarimetric radar sounding to investigate ice crystal orientation fabric, and its impact on ice viscosity, within the near-surface of Rutford Ice Stream, West Antarctica. The technique retrieves lateral and depth variation in the horizontal components of ice fabric but no direct information on the vertical fabric component. In the shallowest ice (depths 40-100 m), the fabric is consistent with flow-induced development and correlates with the surface compression direction. Notably, toward the ice-stream margin the horizontal compression angle and azimuthal fabric orientation tend toward 45Ā° relative to ice flow which is consistent with the early stages of flow-induced fabric under simple shear. The fabric orientation in deeper ice (depths 100-300 m) is, in places, significantly misaligned with shallower ice and the surface compression direction due to sharp depth-transitions in orientation. We then use a rheological model to bound effective anisotropic viscosities (directional hardness) of ice that are consistent with the radar measurements. Toward the shear margin, we show that the shallow-ice fabric does not appreciably soften the ice to lateral shear, although this may happen in deeper ice. In the center of the ice stream, we show that lateral and depth variation in the fabric alignment relative to ice flow results in corresponding changes in uniaxial ice viscosities relative to ice flow. Our results indicate that spatial variability in fabric translates to variability in viscosity that widely used isotropic ice-flow models are unable to consider

    Strongly depth-dependent ice fabric in a fast-flowing Antarctic ice stream revealed with icequake observations

    Get PDF
    The crystal orientation fabric of glacier ice impacts its strength and flow. Crystal fabric is therefore an important consideration when modelling ice flow. Here, we show that shear-wave splitting (SWS) measured with glacial microseismicity can be used to invert for seismic anisotropy and ice fabric, if represented in a statistical sense. Rutford Ice Stream (RIS) is a fast-flowing Antarctic ice stream, a setting crucial for informing large-scale ice sheet models. We present >200,000 SWS measurements from glacial microseismicity, registered at a 38-station seismic network located āˆ¼40 km upstream of the grounding line. A representative subset of these data is inverted for ice fabric. Due to the character of SWS, which accumulates along the raypath, we include information on the depth structure from radar measurements. We find that the following three-layer configuration fits the data best: a broad vertical cone fabric near the base of RIS (500 m thick), a thick vertical girdle fabric, orientated perpendicular to flow, in the middle (1200 m thick) and a tilted cone fabric in the uppermost 400 m. Such a variation of fabric implies a depth-dependent strength profile of the ice with the middle layer being āˆ¼3.5 times harder to deform along flow than across flow. At the same time, the middle layer is a factor āˆ¼16 softer to shear than to compression or extension along flow. If such a configuration is representative for fast-flowing ice streams, it would call for a more complex integration of viscosity in ice sheet models

    DAS-N2N: machine learning distributed acoustic sensing (DAS) signal denoising without clean data

    No full text
    This paper presents a weakly supervised machine learning method, which we call DAS-N2N, for suppressing strong random noise in distributed acoustic sensing (DAS) recordings. DAS-N2N requires no manually produced labels (i.e. pre-determined examples of clean event signals or sections of noise) for training and aims to map random noise processes to a chosen summary statistic, such as the distribution mean, median or mode, whilst retaining the true underlying signal. This is achieved by splicing (joining together) two fibres hosted within a single optical cable, recording two noisy copies of the same underlying signal corrupted by different independent realizations of random observational noise. A deep learning model can then be trained using only these two noisy copies of the data to produce a near fully denoised copy. Once the model is trained, only noisy data from a single fibre is required. Using a data set from a DAS array deployed on the surface of the Rutford Ice Stream in Antarctica, we demonstrate that DAS-N2N greatly suppresses incoherent noise and enhances the signal-to-noise ratios (SNR) of natural microseismic icequake events. We further show that this approach is inherently more efficient and effective than standard stop/pass band and white noise (e.g. Wiener) filtering routines, as well as a comparable self-supervised learning method based on masking individual DAS channels. Our preferred model for this task is lightweight, processing 30 s of data recorded at a sampling frequency of 1000 Hz over 985 channels (approximately 1 km of fibre) in <1 s. Due to the high noise levels in DAS recordings, efficient data-driven denoising methods, such as DAS-N2N, will prove essential to time-critical DAS earthquake detection, particularly in the case of microseismic monitoring

    The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: insights into tectonic structure and geothermal heat flow

    Get PDF
    We present a shear wave model of the West Antarctic upper mantle to āˆ¼200 km depth with enhanced regional resolution from the 2016-2018 UK Antarctic Seismic Network. The model is constructed from the combination of fundamental mode Rayleigh wave phase velocities extracted from ambient noise (periods 8-25 s) and earthquake data by two-plane wave analysis (periods 20-143 s). We seek to (i) image and interpret structures against the tectonic evolution of West Antarctica, and (ii) extract information from the seismic model that can serve as boundary conditions in ice sheet and glacial isostatic adjustment modelling efforts. The distribution of low velocity anomalies in the uppermost mantle suggests that recent tectonism in the West Antarctic Rift System (WARS) is mainly concentrated beneath the rift margins and largely confined to the uppermost mantle (<180 km). On the northern margin of the WARS, a pronounced low velocity anomaly extends eastward from beneath the Marie Byrd Land dome toward Pine Island Bay, underlying Thwaites Glacier, but not Pine Island Glacier. If of plume-related thermal origin, the velocity contrast of āˆ¼5% between this anomaly and the inner WARS translates to a temperature difference of āˆ¼125-200 Cāˆ˜ . However, the strike of the anomaly parallels the paleo-Pacific convergent margin of Gondwana, so it may reflect subduction-related melt and volatiles rather than anomalously elevated temperatures, or a combination thereof. Motivated by xenolith analyses, we speculate that high velocity zones imaged south of the Marie Byrd Land dome and in the eastern Ross Sea Embayment might reflect the compositional signature of ancient continental fragments. A pronounced low velocity anomaly underlying the southern Transantarctic Mountains (TAM) is consistent with a published lithospheric foundering hypothesis. Taken together with a magnetotelluric study advocating flexural support of the central TAM by thick, stable lithosphere, this points to along-strike variation in the tectonic history of the TAM. A high velocity anomaly located in the southern Weddell Sea Rift System might reflect depleted mantle lithosphere following the extraction of voluminous melt related to Gondwana fragmentation. Lithospheric thickness estimates extracted from 1D shear wave velocity profiles representative of tectonic domains in West Antarctica indicate an average lithospheric thickness of āˆ¼85 km for the WARS, Marie Byrd Land, and Thurston Island block. This increases to āˆ¼96 km in the Ellsworth Mountains. A surface heat flow of āˆ¼60mW/m2 and attendant geotherm best explains lithospheric mantle shear wave velocities in the central WARS and in the Thurston Island block adjacent to Pine Island Glacier; a āˆ¼50mW/m2 geotherm best explains the velocities in the Ellsworth Mountains, and a āˆ¼60mW/m2 geotherm best explains a less well-constrained velocity profile on the southern Antarctic Peninsula. We emphasise that these are regional average (many hundreds of km) heat flow estimates constrained by seismic data with limited sensitivity to upper crustal composition
    corecore